Prometheus的整体架构如下:
Prometheus Server是Prometheus组件中的核心部分,负责实现对监控数据的获取,存储以及查询。
Exporter将监控数据采集的端点通过HTTP服务的形式暴露给Prometheus Server,Prometheus Server通过访问该Exporter提供的Endpoint端点,即可获取到需要采集的监控数据。
一般来说可以将Exporter分为2类:
在Prometheus Server中支持基于PromQL创建告警规则,如果满足PromQL定义的规则,则会产生一条告警,而告警的后续处理流程则由AlertManager进行管理。在AlertManager中我们可以与邮件,Slack等等内置的通知方式进行集成,也可以通过Webhook自定义告警处理方式。AlertManager即Prometheus体系中的告警处理中心。
由于Prometheus数据采集基于Pull模型进行设计,因此在网络环境的配置上必须要让Prometheus Server能够直接与Exporter进行通信。 当这种网络需求无法直接满足时,就可以利用PushGateway来进行中转。可以通过PushGateway将内部网络的监控数据主动Push到Gateway当中。而Prometheus Server则可以采用同样Pull的方式从PushGateway中获取到监控数据。
在云上所有资源都是弹性的,这些资源可以随着需求规模的变化而变化。例如在AWS的AutoScaling,可以根据用户定义的规则动态地创建或者销毁EC2实例,从而使用户部署在AWS上的应用可以自动的适应访问规模的变化;在Kubernetes中,pod也会随时在创建和被销毁。
这种按需的资源使用方式对于监控系统而言就意味着没有了一个固定的监控目标,所有的监控对象(基础设施、应用、服务)都在动态的变化。对于Prometheus这一类基于Pull模式的监控系统,显然也无法继续使用的static_configs的方式静态的定义监控目标。而对于Prometheus而言其解决方案就是引入一个中间的代理人(服务注册中心),这个代理人掌握着当前所有监控目标的访问信息,Prometheus只需要向这个代理人询问有哪些监控目标控即可, 这种模式被称为服务发现。
Prometheus通过使用平台提供的API就可以找到所有需要监控的云主机。在Kubernetes这类容器管理平台中,Kubernetes掌握并管理着所有的容器以及服务信息,那此时Prometheus只需要与Kubernetes打交道就可以找到所有需要监控的容器以及服务对象。Prometheus还可以直接与一些开源的服务发现工具进行集成,例如在微服务架构的应用程序中,经常会使用到例如Consul这样的服务发现注册软件,Promethues也可以与其集成从而动态的发现需要监控的应用服务实例。